Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sergiy Kalnaus
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Beth L Armstrong
- Bogdan Dryzhakov
- Christopher Rouleau
- Costas Tsouris
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jaswinder Sharma
- Jong K Keum
- Kyle Kelley
- Mina Yoon
- Nancy Dudney
- Radu Custelcean
- Ramanan Sankaran
- Steven Randolph
- Vimal Ramanuj
- Wenjun Ge

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.