Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Blane Fillingim
- Brian Post
- Hsuan-Hao Lu
- Joseph Lukens
- Lauren Heinrich
- Muneer Alshowkan
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Anees Alnajjar
- Bogdan Dryzhakov
- Brian Williams
- Christopher Rouleau
- Claire Marvinney
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Ilia N Ivanov
- Ivan Vlassiouk
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Kyle Kelley
- Mariam Kiran
- Mina Yoon
- Nance Ericson
- Radu Custelcean
- Ramanan Sankaran
- Srikanth Yoginath
- Steven Randolph
- Varisara Tansakul
- Vimal Ramanuj
- Wenjun Ge

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.