Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Tomonori Saito
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Edgar Lara-Curzio
- Ethan Self
- Jaswinder Sharma
- Rishi Pillai
- Robert Sacci
- Sergiy Kalnaus
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alexander I Wiechert
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin Manard
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Chanho Kim
- Charles F Weber
- Charles Hawkins
- Christopher Ledford
- Costas Tsouris
- Eric Wolfe
- Felipe Polo Garzon
- Frederic Vautard
- Georgios Polyzos
- Ilias Belharouak
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Marie Romedenne
- Matthew S Chambers
- Matt Vick
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Nancy Dudney
- Nidia Gallego
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peng Yang
- Priyanshi Agrawal
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Shajjad Chowdhury
- Tim Graening Seibert
- Tolga Aytug
- Vandana Rallabandi
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiang Lyu
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.