Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Nicholas Peters
- Tomonori Saito
- Ethan Self
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Muneer Alshowkan
- Robert Sacci
- Sergiy Kalnaus
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Brian Williams
- Chanho Kim
- Christopher Rouleau
- Costas Tsouris
- Felipe Polo Garzon
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ilias Belharouak
- Ivan Vlassiouk
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Mariam Kiran
- Matthew S Chambers
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Radu Custelcean
- Sai Krishna Reddy Adapa
- Vera Bocharova
- Xiang Lyu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.