Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Benjamin Manard
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Cyril Thompson
- Diana E Hun
- Mike Zach
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Bryan Maldonado Puente
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Corey Cooke
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Matt Vick
- Michael Kirka
- Nedim Cinbiz
- Nolan Hayes
- Obaid Rahman
- Padhraic L Mulligan
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Sandra Davern
- Tony Beard
- Vandana Rallabandi

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.