Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Ritin Mathews
- Ying Yang
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Michael Kirka
- Peeyush Nandwana
- Ryan Dehoff
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Alice Perrin
- Amit Shyam
- Christopher Ledford
- David Olvera Trejo
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Rangasayee Kannan
- Scott Smith
- Steven J Zinkle
- William Carter
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Akash Jag Prasad
- Alex Plotkowski
- Alex Roschli
- Amir K Ziabari
- Amy Elliott
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brian Gibson
- Bruce A Pint
- Calen Kimmell
- Cameron Adkins
- Christopher Bowland
- Christopher Fancher
- Corson Cramer
- Costas Tsouris
- Craig Blue
- David S Parker
- Edgar Lara-Curzio
- Emma Betters
- Felix L Paulauskas
- Frederic Vautard
- Fred List III
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Isha Bhandari
- James A Haynes
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jong K Keum
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Michael Borish
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Philip Bingham
- Radu Custelcean
- Richard Howard
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Thomas Butcher
- Tim Graening Seibert
- Tony L Schmitz
- Trevor Aguirre
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.