Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Corson Cramer
- Soydan Ozcan
- Steve Bullock
- Steven Guzorek
- Meghan Lamm
- Umesh N MARATHE
- Vipin Kumar
- Brian Post
- Halil Tekinalp
- Uday Vaidya
- Beth L Armstrong
- David Nuttall
- Greg Larsen
- James Klett
- Katie Copenhaver
- Trevor Aguirre
- Alex Roschli
- Craig Blue
- Dan Coughlin
- Georges Chahine
- Jim Tobin
- John Lindahl
- Matt Korey
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alexander I Wiechert
- Amber Hubbard
- Benjamin Manard
- Ben Lamm
- Brittany Rodriguez
- Cait Clarkson
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Jeremy Malmstead
- Jesse Heineman
- Joanna Mcfarlane
- Jonathan Willocks
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marm Dixit
- Matt Vick
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Ryan Ogle
- Sana Elyas
- Sanjita Wasti
- Shajjad Chowdhury
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Vandana Rallabandi
- Xianhui Zhao

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Wire arc additive manufacturing has limited productivity and casting processes require complex molds that are expensive and time-consuming to produce.

As additive manufacturing technologies advance and 3D-printers get larger, there is a constant need for larger extruders with higher throughput to construct larger objects at reasonable time.