Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Rama K Vasudevan
- Ritin Mathews
- Sergei V Kalinin
- Yongtao Liu
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Joshua Vaughan
- Kyle Kelley
- Lauren Heinrich
- Logan Kearney
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Benjamin L Doughty
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Edgar Lara-Curzio
- Emma Betters
- Felix L Paulauskas
- Frederic Vautard
- Fred List III
- Gerd Duscher
- Gordon Robertson
- Greg Corson
- Holly Humphrey
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Michael Borish
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Philip Bingham
- Richard Howard
- Robert E Norris Jr
- Roger G Miller
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Sarah Graham
- Singanallur Venkatakrishnan
- Stephen Jesse
- Steve Bullock
- Steven Guzorek
- Sumit Gupta
- Sumner Harris
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.