Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Hongbin Sun
- Mike Zach
- Philip Bingham
- Philip Boudreaux
- Prashant Jain
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Bryan Maldonado Puente
- Charlie Cook
- Christopher Hershey
- Corey Cooke
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Michael Kirka
- Nate See
- Nedim Cinbiz
- Nithin Panicker
- Nolan Hayes
- Obaid Rahman
- Padhraic L Mulligan
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Sandra Davern
- Tony Beard
- Vishaldeep Sharma
- Vittorio Badalassi

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.