Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Yong Chae Lim
- Mike Zach
- Rangasayee Kannan
- Adam Stevens
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Post
- Bruce Moyer
- Bryan Lim
- Charlie Cook
- Christopher Hershey
- Christopher Hobbs
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Eddie Lopez Honorato
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Nedim Cinbiz
- Padhraic L Mulligan
- Peeyush Nandwana
- Priyanshi Agrawal
- Rodney D Hunt
- Roger G Miller
- Ryan Dehoff
- Ryan Heldt
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Tony Beard
- Tyler Gerczak
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.