Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Ali Passian
- Michael Kirka
- Joseph Chapman
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Hsuan-Hao Lu
- James Klett
- Joseph Lukens
- Mike Zach
- Muneer Alshowkan
- Peeyush Nandwana
- Alice Perrin
- Amir K Ziabari
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Beth L Armstrong
- Brad Johnson
- Brian Post
- Brian Williams
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Claire Marvinney
- Corson Cramer
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Fred List III
- Harper Jordan
- Hsin Wang
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Justin Griswold
- Keith Carver
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mariam Kiran
- Nance Ericson
- Nedim Cinbiz
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Tony Beard
- Trevor Aguirre
- Varisara Tansakul
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.