Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Corson Cramer
- Soydan Ozcan
- Steve Bullock
- Steven Guzorek
- Meghan Lamm
- Umesh N MARATHE
- Vipin Kumar
- Brian Post
- Halil Tekinalp
- Uday Vaidya
- Beth L Armstrong
- David Nuttall
- Greg Larsen
- James Klett
- Katie Copenhaver
- Trevor Aguirre
- Alex Roschli
- Craig Blue
- Dan Coughlin
- Georges Chahine
- Hongbin Sun
- Jim Tobin
- John Lindahl
- Matt Korey
- Mike Zach
- Prashant Jain
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alexander I Wiechert
- Amber Hubbard
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Brad Johnson
- Brandon A Wilson
- Brittany Rodriguez
- Bruce Moyer
- Cait Clarkson
- Callie Goetz
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Hobbs
- Christopher Ledford
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Debjani Pal
- Dustin Gilmer
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Gabriel Veith
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- Joanna Mcfarlane
- Jonathan Willocks
- Jordan Wright
- Joseph Olatt
- Josh Crabtree
- Julian Charron
- Justin Griswold
- Keith Carver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kunal Mondal
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mahim Mathur
- Marm Dixit
- Matt Kurley III
- Matt Vick
- Merlin Theodore
- Michael Kirka
- Mingyan Li
- Nadim Hmeidat
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oluwafemi Oyedeji
- Oscar Martinez
- Padhraic L Mulligan
- Paritosh Mhatre
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Ryan Ogle
- Sam Hollifield
- Sana Elyas
- Sandra Davern
- Sanjita Wasti
- Shajjad Chowdhury
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Butcher
- Thomas Feldhausen
- Thomas R Muth
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Xianhui Zhao

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).