Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Corson Cramer
- Steve Bullock
- Greg Larsen
- James Klett
- Trevor Aguirre
- Hongbin Sun
- Prashant Jain
- Vlastimil Kunc
- Ahmed Hassen
- Beth L Armstrong
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Debjani Pal
- Dustin Gilmer
- Ian Greenquist
- Ilias Belharouak
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Jordan Wright
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Michael Kirka
- Mike Zach
- Nadim Hmeidat
- Nate See
- Nithin Panicker
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Sana Elyas
- Sandra Davern
- Steven Guzorek
- Tomonori Saito
- Tony Beard
- Vishaldeep Sharma
- Vittorio Badalassi

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.