Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Andrzej Nycz
- Adam M Guss
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Alex Walters
- Amit K Naskar
- Michael Kirka
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Biruk A Feyissa
- Brian Gibson
- Brian Post
- Carrie Eckert
- Clay Leach
- Jaswinder Sharma
- Josh Michener
- Joshua Vaughan
- Kuntal De
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Philip Bingham
- Udaya C Kalluri
- Vilmos Kertesz
- William Carter
- Xiaohan Yang
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Arit Das
- Austin Carroll
- Benjamin L Doughty
- Brian Sanders
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Daniel Jacobson
- Debjani Pal
- Diana E Hun
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jesse Heineman
- Joanna Tannous
- John F Cahill
- John Potter
- Kitty K Mccracken
- Kyle Davis
- Liam White
- Liangyu Qian
- Mark M Root
- Mengdawn Cheng
- Michael Borish
- Nandhini Ashok
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paul Abraham
- Paula Cable-Dunlap
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Serena Chen
- Soydan Ozcan
- Sudarsanam Babu
- Sumit Gupta
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.