Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Costas Tsouris
- Adam M Guss
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Gyoung Gug Jang
- Isabelle Snyder
- Alexander I Wiechert
- Andrzej Nycz
- Emilio Piesciorovsky
- Gs Jung
- Josh Michener
- Kuntal De
- Michael Cordon
- Udaya C Kalluri
- Xiaohan Yang
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Ajibola Lawal
- Alex Walters
- Ali Riza Ekti
- Austin Carroll
- Benjamin Manard
- Biruk A Feyissa
- Canhai Lai
- Carrie Eckert
- Charles F Weber
- Chris Masuo
- Clay Leach
- Debjani Pal
- Dhruba Deka
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Parks II
- Jay D Huenemann
- Jeff Foster
- Jeffrey Einkauf
- Joanna Mcfarlane
- Joanna Tannous
- John F Cahill
- Jonathan Willocks
- Jong K Keum
- Kyle Davis
- Liangyu Qian
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mina Yoon
- Nils Stenvig
- Ozgur Alaca
- Paul Abraham
- Raymond Borges Hink
- Serena Chen
- Sreshtha Sinha Majumdar
- Subho Mukherjee
- Vandana Rallabandi
- Vilmos Kertesz
- Vincent Paquit
- Viswadeep Lebakula
- Vivek Sujan
- Yang Liu
- Yarom Polsky
- Yeonshil Park

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Sugars (glucose and xylose) can be converted into dioxolanes which phase separate from water. These dioxolanes can be heterolytically cleaved which acts as a controlled dehydration reaction which results in ring closing of the subsequent structure to furans such as 5-hydr

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The hybrid powder-encapsulated solvent over comes carbon capture challenges by providing a solution for easy handling of a non-toxic solid that is non-volatile and stable upon alternative energy regeneration methods.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.