Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Jonathan Willocks
- Marm Dixit
- Ruhul Amin
- Xiang Lyu
- Alexander I Wiechert
- Amit K Naskar
- Benjamin Manard
- Ben LaRiviere
- Beth L Armstrong
- Charles F Weber
- Costas Tsouris
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Govindarajan Muralidharan
- Holly Humphrey
- Hongbin Sun
- Isaac Sikkema
- James Szybist
- Joanna Mcfarlane
- Joseph Olatt
- Junbin Choi
- Khryslyn G Araño
- Kunal Mondal
- Logan Kearney
- Lu Yu
- Mahim Mathur
- Matt Vick
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mingyan Li
- Nance Ericson
- Nihal Kanbargi
- Oscar Martinez
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Rose Montgomery
- Sam Hollifield
- Thomas R Muth
- Todd Toops
- Vandana Rallabandi
- Venugopal K Varma
- Yaocai Bai
- Zhijia Du

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Free-standing, thin films were fabricated with a binder resulting in nearly an order of magnitude thickness decrease while increasing porosity and activation energy. These effects of such diminished significantly. Free-standing films could be fabricated with a binder.

This technology creates a light and metalless current collector for battery application. Cathodes coated on this new current collector demonstrated similar contact resistance, lower charge transfer resistance and similar or high rate performance.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.