Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Peter Wang
- Justin West
- Ritin Mathews
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Amir K Ziabari
- David Olvera Trejo
- Diana E Hun
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Logan Kearney
- Michael Kirka
- Michael Toomey
- Nihal Kanbargi
- Philip Bingham
- Philip Boudreaux
- Rangasayee Kannan
- Scott Smith
- Stephen M Killough
- Vincent Paquit
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Amit Shyam
- Amy Elliott
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brian Gibson
- Bryan Maldonado Puente
- Calen Kimmell
- Cameron Adkins
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Corey Cooke
- Corson Cramer
- Craig Blue
- Edgar Lara-Curzio
- Emma Betters
- Felix L Paulauskas
- Frederic Vautard
- Fred List III
- Gina Accawi
- Gordon Robertson
- Greg Corson
- Gurneesh Jatana
- Holly Humphrey
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Mark M Root
- Michael Borish
- Nolan Hayes
- Obaid Rahman
- Richard Howard
- Robert E Norris Jr
- Roger G Miller
- Ryan Kerekes
- Sally Ghanem
- Santanu Roy
- Sarah Graham
- Steve Bullock
- Steven Guzorek
- Sumit Gupta
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.