Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Kyle Gluesenkamp
- Amit K Naskar
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Bo Shen
- Diana E Hun
- Jaswinder Sharma
- Logan Kearney
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Nihal Kanbargi
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Arit Das
- Benjamin L Doughty
- Bryan Maldonado Puente
- Christopher Bowland
- Corey Cooke
- Dhruba Deka
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- James Manley
- Mark M Root
- Michael Kirka
- Navin Kumar
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Robert E Norris Jr
- Ryan Kerekes
- Sally Ghanem
- Santanu Roy
- Sreshtha Sinha Majumdar
- Sumit Gupta
- Tugba Turnaoglu
- Uvinduni Premadasa
- Vera Bocharova
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention describes a configuration of dishwasher using thermoelectric heat pumps that can accomplish energy savings and enhanced drying performance.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

Lean-burn natural gas (NG) engines are a preferred choice for the hard-to-electrify sectors for higher efficiency and lower NOx emissions, but methane slip can be a challenge.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.