Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Ying Yang
- Kyle Kelley
- Rama K Vasudevan
- Alexey Serov
- Alice Perrin
- Jaswinder Sharma
- Sergei V Kalinin
- Steven J Zinkle
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce A Pint
- Christopher Ledford
- Costas Tsouris
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- James A Haynes
- James Szybist
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Kevin M Roccapriore
- Khryslyn G Araño
- Liam Collins
- Logan Kearney
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Neus Domingo Marimon
- Nicholas Richter
- Nihal Kanbargi
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Ritu Sahore
- Ryan Dehoff
- Stephen Jesse
- Steven Randolph
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Todd Toops
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yongtao Liu

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.