Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sergei V Kalinin
- Alexander I Wiechert
- Anton Ievlev
- Benjamin Manard
- Bogdan Dryzhakov
- Charles F Weber
- Christopher Hobbs
- Costas Tsouris
- Eddie Lopez Honorato
- Govindarajan Muralidharan
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Kevin M Roccapriore
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Marti Checa Nualart
- Matt Kurley III
- Matt Vick
- Maxim A Ziatdinov
- Mingyan Li
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oscar Martinez
- Rodney D Hunt
- Rose Montgomery
- Ryan Heldt
- Sam Hollifield
- Stephen Jesse
- Steven Randolph
- Thomas R Muth
- Tyler Gerczak
- Vandana Rallabandi
- Venugopal K Varma
- Yongtao Liu

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.