Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ali Passian
- Amit Shyam
- Alex Plotkowski
- Joseph Chapman
- Nicholas Peters
- Yong Chae Lim
- Hsuan-Hao Lu
- James A Haynes
- Joseph Lukens
- Muneer Alshowkan
- Peeyush Nandwana
- Rangasayee Kannan
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Anees Alnajjar
- Brian Post
- Brian Williams
- Bryan Lim
- Christopher Fancher
- Claire Marvinney
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Nance Ericson
- Nicholas Richter
- Peter Wang
- Priyanshi Agrawal
- Roger G Miller
- Sarah Graham
- Srikanth Yoginath
- Sudarsanam Babu
- Sunyong Kwon
- Tomas Grejtak
- Varisara Tansakul
- William Peter
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.