Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Ali Riza Ekti
- Amir K Ziabari
- Hongbin Sun
- Philip Bingham
- Prashant Jain
- Raymond Borges Hink
- Ryan Dehoff
- Vincent Paquit
- Aaron Werth
- Aaron Wilson
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Burak Ozpineci
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Costas Tsouris
- Diana E Hun
- Eddie Lopez Honorato
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Fred List III
- Gary Hahn
- Gina Accawi
- Govindarajan Muralidharan
- Gurneesh Jatana
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isabelle Snyder
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Mark M Root
- Matt Kurley III
- Matt Vick
- Michael Kirka
- Mike Zach
- Mingyan Li
- Mostak Mohammad
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nils Stenvig
- Nithin Panicker
- Obaid Rahman
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Yarom Polsky

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.