Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Soydan Ozcan
- Adam M Guss
- Meghan Lamm
- Umesh N MARATHE
- Halil Tekinalp
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- Josh Michener
- Matt Korey
- Pum Kim
- Vipin Kumar
- Xiaohan Yang
- Adwoa Owusu
- Akash Phadatare
- Alex Walters
- Amber Hubbard
- Andrzej Nycz
- Austin Carroll
- Ben Lamm
- Brian Post
- Cait Clarkson
- Carrie Eckert
- Clay Leach
- David Nuttall
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Joanna Tannous
- John F Cahill
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Marm Dixit
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Paul Abraham
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Serena Chen
- Shajjad Chowdhury
- Steve Bullock
- Tolga Aytug
- Tyler Smith
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Xianhui Zhao
- Yang Liu

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.