Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Soydan Ozcan
- Meghan Lamm
- Rama K Vasudevan
- Halil Tekinalp
- Sergei V Kalinin
- Umesh N MARATHE
- Vlastimil Kunc
- Yongtao Liu
- Ahmed Hassen
- Katie Copenhaver
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Steven Guzorek
- Uday Vaidya
- Alex Roschli
- Beth L Armstrong
- Dan Coughlin
- Georges Chahine
- Kyle Kelley
- Matt Korey
- Pum Kim
- Vipin Kumar
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Brian Post
- Cait Clarkson
- David Nuttall
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerd Duscher
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Kai Li
- Kashif Nawaz
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Nadim Hmeidat
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Shajjad Chowdhury
- Stephen Jesse
- Steve Bullock
- Sumner Harris
- Tolga Aytug
- Tyler Smith
- Utkarsh Pratiush
- Xianhui Zhao
- Xiaobing Liu

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).