Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) User Facilities (27)
Researcher
- Kashif Nawaz
- Rama K Vasudevan
- Ryan Dehoff
- Joe Rendall
- Sergei V Kalinin
- Yongtao Liu
- Zhiming Gao
- Kai Li
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Praveen Cheekatamarla
- Vishaldeep Sharma
- James Manley
- Jamieson Brechtl
- Kyle Gluesenkamp
- Michael Kirka
- Mingkan Zhang
- Stephen Jesse
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Blane Fillingim
- Bogdan Dryzhakov
- Bo Shen
- Brian Fricke
- Brian Post
- Cheng-Min Yang
- Christopher Hobbs
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- David Nuttall
- Debangshu Mukherjee
- Easwaran Krishnan
- Eddie Lopez Honorato
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- Jewook Park
- Jong K Keum
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Kurley III
- Md Inzamam Ul Haque
- Melanie Moses-DeBusk Debusk
- Mina Yoon
- Muneeshwaran Murugan
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Pengtao Wang
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Rodney D Hunt
- Roger G Miller
- Ryan Heldt
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Singanallur Venkatakrishnan
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Troy Seay
- Tyler Gerczak
- Utkarsh Pratiush
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The heat exchanger is a three-medium heat exchanger with phase change material (PCM) stored in the external fin tubes. It allows the refrigerant flowing inside the internal fin tubes and the air to

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.