Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) National Security Sciences Directorate (17)
- (-) User Facilities (27)
Researcher
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Sam Hollifield
- Chad Steed
- Costas Tsouris
- Gurneesh Jatana
- Jonathan Willocks
- Junghoon Chae
- Kashif Nawaz
- Michael Kirka
- Mingyan Li
- Singanallur Venkatakrishnan
- Stephen Jesse
- Todd Toops
- Travis Humble
- Vincent Paquit
- Yeonshil Park
- Aaron Myers
- Aaron Werth
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alexey Serov
- Alex Plotkowski
- Alice Perrin
- Ali Passian
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Manard
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Brian Weber
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David Nuttall
- Debangshu Mukherjee
- Derek Dwyer
- Dhruba Deka
- Diana E Hun
- Emilio Piesciorovsky
- Eve Tsybina
- Gary Hahn
- Gerd Duscher
- Gina Accawi
- Gs Jung
- Gyoung Gug Jang
- Haiying Chen
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- James Haley
- James Klett
- James Szybist
- Jamieson Brechtl
- Jason Jarnagin
- Jewook Park
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jong K Keum
- Joseph Olatt
- Justin Cazares
- Kai Li
- Kevin Spakes
- Kunal Mondal
- Kyle Gluesenkamp
- Liam Collins
- Lilian V Swann
- Louise G Evans
- Luke Koch
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Mark Provo II
- Marti Checa Nualart
- Mary A Adkisson
- Matt Larson
- Matt Vick
- Md Inzamam Ul Haque
- Melanie Moses-DeBusk Debusk
- Mengdawn Cheng
- Mina Yoon
- Nance Ericson
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Radu Custelcean
- Rangasayee Kannan
- Raymond Borges Hink
- Richard L. Reed
- Rob Root
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Samudra Dasgupta
- Sarah Graham
- Sreshtha Sinha Majumdar
- Srikanth Yoginath
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- T Oesch
- Tony Beard
- Utkarsh Pratiush
- Vandana Rallabandi
- Varisara Tansakul
- Vipin Kumar
- Viswadeep Lebakula
- Vlastimil Kunc
- William Peter
- William P Partridge Jr
- Xiang Lyu
- Xiaobing Liu
- Yan-Ru Lin
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.