Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Amit Shyam
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Brian Post
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Sudarsanam Babu
- Anees Alnajjar
- Blane Fillingim
- Chad Steed
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Rangasayee Kannan
- Ryan Dehoff
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Christopher Fancher
- Claire Marvinney
- Craig A Bridges
- David S Parker
- Dean T Pierce
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jovid Rakhmonov
- Mariam Kiran
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Peter Wang
- Ramanan Sankaran
- Raymond Borges Hink
- Roger G Miller
- Samudra Dasgupta
- Sarah Graham
- Sheng Dai
- Sunyong Kwon
- Tomas Grejtak
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- William Peter
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.