Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Costas Tsouris
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Alexander I Wiechert
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Chad Steed
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Prashant Jain
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Beth L Armstrong
- Brad Johnson
- Brandon A Wilson
- Brandon Miller
- Brian Williams
- Bryan Lim
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Diana E Hun
- Easwaran Krishnan
- Eddie Lopez Honorato
- Emilio Piesciorovsky
- Fred List III
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Govindarajan Muralidharan
- Harper Jordan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kashif Nawaz
- Keith Carver
- Kuma Sumathipala
- Kunal Mondal
- Mahim Mathur
- Mariam Kiran
- Matt Kurley III
- Matt Vick
- Md Inzamam Ul Haque
- Mengjia Tang
- Mike Zach
- Mina Yoon
- Mingyan Li
- Muneeshwaran Murugan
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nicholas Richter
- Nithin Panicker
- Olga S Ovchinnikova
- Oscar Martinez
- Pablo Moriano Salazar
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Sam Hollifield
- Samudra Dasgupta
- Sheng Dai
- Sunyong Kwon
- Thomas Butcher
- Thomas R Muth
- Tomas Grejtak
- Tomonori Saito
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma
- Vimal Ramanuj
- Vishaldeep Sharma
- Vittorio Badalassi
- Vivek Sujan
- Wenjun Ge
- Ying Yang
- Yiyu Wang
- Zoriana Demchuk

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.