Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Chad Steed
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Callie Goetz
- Christopher Hobbs
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Diana E Hun
- Easwaran Krishnan
- Eddie Lopez Honorato
- Emilio Piesciorovsky
- Fred List III
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Jong K Keum
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kashif Nawaz
- Keith Carver
- Kuma Sumathipala
- Mariam Kiran
- Matt Kurley III
- Md Inzamam Ul Haque
- Mengjia Tang
- Mina Yoon
- Muneeshwaran Murugan
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Richard Howard
- Rodney D Hunt
- Ryan Dehoff
- Ryan Heldt
- Samudra Dasgupta
- Sheng Dai
- Sunyong Kwon
- Thomas Butcher
- Tomas Grejtak
- Tomonori Saito
- Tyler Gerczak
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- Ying Yang
- Yiyu Wang
- Zoriana Demchuk

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.