Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Corson Cramer
- Steve Bullock
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Brian Post
- Greg Larsen
- James Klett
- Joseph Chapman
- Jun Qu
- Muneer Alshowkan
- Rangasayee Kannan
- Srikanth Yoginath
- Sudarsanam Babu
- Trevor Aguirre
- Yong Chae Lim
- Anees Alnajjar
- Blane Fillingim
- Chad Steed
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Meghan Lamm
- Pratishtha Shukla
- Radu Custelcean
- Ryan Dehoff
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Travis Humble
- Vlastimil Kunc
- Ying Yang
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Ben Lamm
- Brandon Miller
- Brian Williams
- Bruce A Pint
- Bryan Lim
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Claire Marvinney
- Craig A Bridges
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Debangshu Mukherjee
- Dustin Gilmer
- Emilio Piesciorovsky
- Ethan Self
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Harper Jordan
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mariam Kiran
- Marm Dixit
- Matthew S Chambers
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Nadim Hmeidat
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Peter Wang
- Priyanshi Agrawal
- Ramanan Sankaran
- Raymond Borges Hink
- Roger G Miller
- Rose Montgomery
- Samudra Dasgupta
- Sana Elyas
- Sarah Graham
- Shajjad Chowdhury
- Sheng Dai
- Steven Guzorek
- Steven J Zinkle
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Varisara Tansakul
- Venugopal K Varma
- Vimal Ramanuj
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Peter
- Xiang Chen
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.