Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ilias Belharouak
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Costas Tsouris
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Ali Abouimrane
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Chad Steed
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Jaswinder Sharma
- Junghoon Chae
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Ruhul Amin
- Ryan Dehoff
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Vincent Paquit
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- David L Wood III
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Gerry Knapp
- Harper Jordan
- Hongbin Sun
- James Haley
- James Parks II
- Jaydeep Karandikar
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jovid Rakhmonov
- Junbin Choi
- Lu Yu
- Mariam Kiran
- Marm Dixit
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Pradeep Ramuhalli
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Samudra Dasgupta
- Sheng Dai
- Sunyong Kwon
- Tomas Grejtak
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Vladimir Orlyanchik
- Wenjun Ge
- Yaocai Bai
- Ying Yang
- Yiyu Wang
- Zackary Snow
- Zhijia Du

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.