Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Diana E Hun
- Adam M Guss
- Ali Passian
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Philip Boudreaux
- Som Shrestha
- Alex Plotkowski
- Amit Shyam
- Joseph Chapman
- Muneer Alshowkan
- Srikanth Yoginath
- Tomonori Saito
- Andrzej Nycz
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Bryan Maldonado Puente
- Chad Steed
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Josh Michener
- Junghoon Chae
- Kuntal De
- Lauren Heinrich
- Mahabir Bhandari
- Nolan Hayes
- Pratishtha Shukla
- Radu Custelcean
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Udaya C Kalluri
- Venugopal K Varma
- Xiaohan Yang
- Yousub Lee
- Zoriana Demchuk
- Aaron Werth
- Achutha Tamraparni
- Adam Aaron
- Adam Siekmann
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Walters
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Austin Carroll
- Beth L Armstrong
- Biruk A Feyissa
- Brandon Miller
- Brian Williams
- Bryan Lim
- Carrie Eckert
- Catalin Gainaru
- Charles D Ottinger
- Chris Masuo
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Debjani Pal
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jaswinder Sharma
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Jong K Keum
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kuma Sumathipala
- Kyle Davis
- Liangyu Qian
- Mariam Kiran
- Mark M Root
- Md Inzamam Ul Haque
- Mengjia Tang
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Natasha Ghezawi
- Nicholas Richter
- Olga S Ovchinnikova
- Pablo Moriano Salazar
- Paul Abraham
- Peter Wang
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ryan Dehoff
- Samudra Dasgupta
- Serena Chen
- Sheng Dai
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Sunyong Kwon
- Tomas Grejtak
- Varisara Tansakul
- Vilmos Kertesz
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Wenjun Ge
- Yang Liu
- Ying Yang
- Yiyu Wang
- Zhenglai Shen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.