Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Computing and Computational Sciences Directorate (35)
Researcher
- Ali Passian
- Brian Post
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Alex Plotkowski
- Amit Shyam
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Muneer Alshowkan
- Srikanth Yoginath
- Sudarsanam Babu
- William Carter
- Alex Roschli
- Andrzej Nycz
- Anees Alnajjar
- Blane Fillingim
- Chad Steed
- Chris Masuo
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Lauren Heinrich
- Luke Meyer
- Pratishtha Shukla
- Radu Custelcean
- Rangasayee Kannan
- Ryan Dehoff
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Alex Walters
- Alice Perrin
- Amy Elliott
- Amy Moore
- Andres Marquez Rossy
- Andrew G Stack
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Bryan Lim
- Cameron Adkins
- Claire Marvinney
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- Isha Bhandari
- Jaswinder Sharma
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Joshua Vaughan
- Jovid Rakhmonov
- Juliane Weber
- Kitty K Mccracken
- Liam White
- Mariam Kiran
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Pablo Moriano Salazar
- Peng Yang
- Peter Wang
- Ramanan Sankaran
- Raymond Borges Hink
- Roger G Miller
- Sai Krishna Reddy Adapa
- Samudra Dasgupta
- Sarah Graham
- Sheng Dai
- Soydan Ozcan
- Sunyong Kwon
- Tomas Grejtak
- Tyler Smith
- Varisara Tansakul
- Vimal Ramanuj
- Vivek Sujan
- Wenjun Ge
- William Peter
- Xianhui Zhao
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.