Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Ali Passian
- Peter Wang
- Amit Shyam
- Brian Post
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- William Carter
- Alex Plotkowski
- Alex Walters
- Joseph Chapman
- Joshua Vaughan
- Luke Meyer
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Sudarsanam Babu
- Alex Roschli
- Anees Alnajjar
- Blane Fillingim
- Brian Gibson
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Lauren Heinrich
- Pratishtha Shukla
- Radu Custelcean
- Ryan Dehoff
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Udaya C Kalluri
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Miloshevsky
- Alice Perrin
- Amy Elliott
- Amy Moore
- Andres Marquez Rossy
- Beth L Armstrong
- Brandon Miller
- Brian Williams
- Calen Kimmell
- Cameron Adkins
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Jong K Keum
- Jovid Rakhmonov
- Kitty K Mccracken
- Liam White
- Mariam Kiran
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Sheng Dai
- Soydan Ozcan
- Sunyong Kwon
- Tyler Smith
- Varisara Tansakul
- Vimal Ramanuj
- Vincent Paquit
- Vivek Sujan
- Vladimir Orlyanchik
- Wenjun Ge
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Ying Yang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.