Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Brian Post
- Ali Passian
- Peter Wang
- Amit Shyam
- Andrzej Nycz
- Chris Masuo
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Alex Plotkowski
- Blane Fillingim
- Joseph Chapman
- Muneer Alshowkan
- Peeyush Nandwana
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Anees Alnajjar
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Joshua Vaughan
- Lauren Heinrich
- Luke Meyer
- Pratishtha Shukla
- Radu Custelcean
- Ryan Dehoff
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- William Carter
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Alex Miloshevsky
- Alex Roschli
- Alex Walters
- Alice Perrin
- Amy Moore
- Andres Marquez Rossy
- Bekki Mills
- Beth L Armstrong
- Brandon Miller
- Brian Gibson
- Brian Williams
- Bruce Hannan
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Craig A Bridges
- Craig Blue
- Dave Willis
- David Olvera Trejo
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- John Wenzel
- Jong K Keum
- Jovid Rakhmonov
- Keju An
- Liam White
- Loren L Funk
- Luke Chapman
- Mariam Kiran
- Mark Loguillo
- Matthew B Stone
- Md Inzamam Ul Haque
- Michael Borish
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Olga S Ovchinnikova
- Polad Shikhaliev
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Shannon M Mahurin
- Sheng Dai
- Steven Guzorek
- Sunyong Kwon
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vimal Ramanuj
- Vivek Sujan
- Vladislav N Sedov
- Vlastimil Kunc
- Wenjun Ge
- William Peter
- Yacouba Diawara
- Ying Yang
- Yukinori Yamamoto
- Yun Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.