Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate
(35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Ryan Dehoff
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Ying Yang
- Alex Plotkowski
- Brian Post
- Joseph Chapman
- Jun Qu
- Michael Kirka
- Muneer Alshowkan
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Amir K Ziabari
- Anees Alnajjar
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- Costas Tsouris
- David S Parker
- Edgar Lara-Curzio
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Lauren Heinrich
- Meghan Lamm
- Philip Bingham
- Pratishtha Shukla
- Radu Custelcean
- Rishi Pillai
- Rob Moore II
- Sergiy Kalnaus
- Steve Bullock
- Steven J Zinkle
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Vincent Paquit
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Zhili Feng
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Alexander I Wiechert
- Alex Miloshevsky
- Amy Moore
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brandon Miller
- Brian Sales
- Brian Williams
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Claire Marvinney
- Craig A Bridges
- David J Mitchell
- Dean T Pierce
- Debangshu Mukherjee
- Diana E Hun
- Emilio Piesciorovsky
- Eric Wolfe
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Gerry Knapp
- Gina Accawi
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gurneesh Jatana
- Harper Jordan
- Hsin Wang
- James Klett
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jian Chen
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mariam Kiran
- Marie Romedenne
- Mark M Root
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Md Inzamam Ul Haque
- Mike Zach
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Obaid Rahman
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Peter Wang
- Philip Boudreaux
- Priyanshi Agrawal
- Ramanan Sankaran
- Raymond Borges Hink
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Shajjad Chowdhury
- Sheng Dai
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Varisara Tansakul
- Venugopal K Varma
- Vimal Ramanuj
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).