Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Anisur Rahman
- Jeff Foster
- Alex Plotkowski
- Amit Shyam
- Diana E Hun
- Mary Danielson
- Srikanth Yoginath
- Syed Islam
- Alexei P Sokolov
- Anees Alnajjar
- Catalin Gainaru
- James A Haynes
- James J Nutaro
- Michelle Lehmann
- Natasha Ghezawi
- Pratishtha Shukla
- Ramesh Bhave
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Benjamin L Doughty
- Beth L Armstrong
- Corson Cramer
- Costas Tsouris
- Craig A Bridges
- Georgios Polyzos
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Isaiah Dishner
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kuma Sumathipala
- Liangyu Qian
- Mariam Kiran
- Mengjia Tang
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nick Galan
- Nick Gregorich
- Peeyush Nandwana
- Radu Custelcean
- Robert Sacci
- Ryan Dehoff
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Sheng Dai
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Sunyong Kwon
- Tao Hong
- Uvinduni Premadasa
- Varisara Tansakul
- Ying Yang

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).