Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Srikanth Yoginath
- Chad Steed
- James J Nutaro
- Junghoon Chae
- Pratishtha Shukla
- Sudip Seal
- Travis Humble
- Ali Passian
- Bruce Moyer
- Bryan Lim
- Callie Goetz
- Christopher Hobbs
- Debjani Pal
- Eddie Lopez Honorato
- Fred List III
- Harper Jordan
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- Keith Carver
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Nance Ericson
- Pablo Moriano Salazar
- Peeyush Nandwana
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Samudra Dasgupta
- Thomas Butcher
- Tomas Grejtak
- Tyler Gerczak
- Varisara Tansakul
- Yiyu Wang

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.