Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Sheng Dai
- Adam M Guss
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Edgar Lara-Curzio
- Ilja Popovs
- Josh Michener
- Kuntal De
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Tolga Aytug
- Udaya C Kalluri
- Uday Vaidya
- Vilmos Kertesz
- Xiaohan Yang
- Ahmed Hassen
- Alexei P Sokolov
- Alex Walters
- Anees Alnajjar
- Austin Carroll
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Sanders
- Bruce Moyer
- Chris Masuo
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Daniel Jacobson
- Debjani Pal
- Eric Wolfe
- Frederic Vautard
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Isaiah Dishner
- Ivan Vlassiouk
- Jayanthi Kumar
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Kaustubh Mungale
- Kyle Davis
- Kyle Kelley
- Liangyu Qian
- Meghan Lamm
- Mina Yoon
- Nageswara Rao
- Nandhini Ashok
- Nidia Gallego
- Paul Abraham
- Phillip Halstenberg
- Radu Custelcean
- Santa Jansone-Popova
- Serena Chen
- Shajjad Chowdhury
- Steven Randolph
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Vincent Paquit
- Vlastimil Kunc
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.