Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Andrzej Nycz
- Chris Masuo
- Alex Walters
- Kuntal De
- Luke Meyer
- Udaya C Kalluri
- William Carter
- Alexander I Kolesnikov
- Alexander I Wiechert
- Alexei P Sokolov
- Bekki Mills
- Benjamin Manard
- Biruk A Feyissa
- Bruce Hannan
- Charles F Weber
- Clay Leach
- Costas Tsouris
- Dave Willis
- Debjani Pal
- Joanna Mcfarlane
- John Wenzel
- Jonathan Willocks
- Joshua Vaughan
- Keju An
- Loren L Funk
- Louise G Evans
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matt Vick
- Peter Wang
- Polad Shikhaliev
- Richard L. Reed
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vandana Rallabandi
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vincent Paquit
- Vladislav N Sedov
- Xiaohan Yang
- Yacouba Diawara
- Yun Liu

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Neutron beams are used around the world to study materials for various purposes.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.