Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Ying Yang
- Alice Perrin
- Josh Michener
- Steven J Zinkle
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Alex Roschli
- Alex Walters
- Amit Shyam
- Andrzej Nycz
- Austin Carroll
- Bruce A Pint
- Carrie Eckert
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James A Haynes
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Mengdawn Cheng
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paul Abraham
- Paula Cable-Dunlap
- Radu Custelcean
- Ryan Dehoff
- Serena Chen
- Soydan Ozcan
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tyler Smith
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.