Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Alex Roschli
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Erin Webb
- Evin Carter
- Hsin Wang
- James Klett
- Jeremy Malmstead
- Jiheon Jun
- John Lindahl
- Kitty K Mccracken
- Marie Romedenne
- Mengdawn Cheng
- Mike Zach
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Soydan Ozcan
- Tony Beard
- Tyler Smith
- Xianhui Zhao
- Yong Chae Lim
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a system and method of needling of veiled AS4 fabric tape.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance