Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alex Roschli
- Erin Webb
- Evin Carter
- Glenn R Romanoski
- Govindarajan Muralidharan
- Jeremy Malmstead
- Kitty K Mccracken
- Oluwafemi Oyedeji
- Ramanan Sankaran
- Rose Montgomery
- Soydan Ozcan
- Thomas R Muth
- Tyler Smith
- Venugopal K Varma
- Vimal Ramanuj
- Wenjun Ge
- Xianhui Zhao

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.