Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alexander I Wiechert
- Alex Roschli
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- Erin Webb
- Evin Carter
- Govindarajan Muralidharan
- Isaac Sikkema
- Jeremy Malmstead
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Kitty K Mccracken
- Kunal Mondal
- Mahim Mathur
- Matt Vick
- Mingyan Li
- Nithin Panicker
- Oluwafemi Oyedeji
- Oscar Martinez
- Prashant Jain
- Rose Montgomery
- Sam Hollifield
- Soydan Ozcan
- Thomas R Muth
- Tyler Smith
- Vandana Rallabandi
- Venugopal K Varma
- Vittorio Badalassi
- Xianhui Zhao

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.

The vast majority of energy conversion technologies and industrial processes depend on heat exchangers for transferring heat between fluids.