Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Soydan Ozcan
- Chad Steed
- Dan Coughlin
- Jim Tobin
- Junghoon Chae
- Mingyan Li
- Pum Kim
- Sam Hollifield
- Segun Isaac Talabi
- Travis Humble
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Brian Weber
- Brittany Rodriguez
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Isaac Sikkema
- Jeremy Malmstead
- John Lindahl
- Joseph Olatt
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kevin Spakes
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Merlin Theodore
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Oscar Martinez
- Ryan Ogle
- Samudra Dasgupta
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- T Oesch
- Ugur Mertyurek
- Xianhui Zhao

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.