Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Ying Yang
- Brian Post
- David Nuttall
- Soydan Ozcan
- Alice Perrin
- Dan Coughlin
- Jim Tobin
- Pum Kim
- Segun Isaac Talabi
- Steven J Zinkle
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Amit Shyam
- Brittany Rodriguez
- Bruce A Pint
- Christopher Ledford
- Costas Tsouris
- Craig Blue
- David S Parker
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- James A Haynes
- Jason Jarnagin
- Jeremy Malmstead
- John Lindahl
- Jong K Keum
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kevin Spakes
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Lilian V Swann
- Mark Provo II
- Merlin Theodore
- Michael Kirka
- Mina Yoon
- Nadim Hmeidat
- Nicholas Richter
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Rob Root
- Ryan Dehoff
- Ryan Ogle
- Sam Hollifield
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Bahl
- Sunyong Kwon
- Thomas Feldhausen
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.