Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Isabelle Snyder
- Tomonori Saito
- Bryan Maldonado Puente
- Emilio Piesciorovsky
- Hongbin Sun
- Mahabir Bhandari
- Nolan Hayes
- Prashant Jain
- Venugopal K Varma
- Zoriana Demchuk
- Aaron Werth
- Aaron Wilson
- Achutha Tamraparni
- Adam Aaron
- Adam Siekmann
- Ali Riza Ekti
- Catalin Gainaru
- Charles D Ottinger
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Gina Accawi
- Gurneesh Jatana
- Ian Greenquist
- Ilias Belharouak
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Natasha Ghezawi
- Nate See
- Nils Stenvig
- Nithin Panicker
- Ozgur Alaca
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Raymond Borges Hink
- Ruhul Amin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Subho Mukherjee
- Vishaldeep Sharma
- Viswadeep Lebakula
- Vittorio Badalassi
- Vivek Sujan
- Yarom Polsky
- Zhenglai Shen

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and