Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Brian Post
- Peter Wang
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Gibson
- Cameron Adkins
- Christopher Fancher
- Christopher Rouleau
- Chris Tyler
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Isha Bhandari
- Ivan Vlassiouk
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jong K Keum
- Liam Collins
- Liam White
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Michael Borish
- Mina Yoon
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Radu Custelcean
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Scott Smith
- Stephen Jesse
- Steven Guzorek
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Vlastimil Kunc
- William Carter
- William Peter
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.