Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) National Security Sciences Directorate (17)
Researcher
- Brian Post
- Peter Wang
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sam Hollifield
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Chad Steed
- Craig Blue
- J.R. R Matheson
- Jaswinder Sharma
- John Lindahl
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Mingyan Li
- Nihal Kanbargi
- Peeyush Nandwana
- Travis Humble
- Yousub Lee
- Aaron Myers
- Aaron Werth
- Adam Stevens
- Alexander I Wiechert
- Alex Roschli
- Ali Passian
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Benjamin Manard
- Brian Gibson
- Brian Weber
- Cameron Adkins
- Charles F Weber
- Charlie Cook
- Christopher Bowland
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Costas Tsouris
- Daniel Rasmussen
- David Olvera Trejo
- Derek Dwyer
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Eve Tsybina
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Gordon Robertson
- Harper Jordan
- Holly Humphrey
- Isaac Sikkema
- Isha Bhandari
- James Klett
- Jason Jarnagin
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Justin Cazares
- Kevin Spakes
- Kunal Mondal
- Liam White
- Lilian V Swann
- Louise G Evans
- Luke Koch
- Luke Meyer
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Matt Larson
- Matt Vick
- Mengdawn Cheng
- Michael Borish
- Nance Ericson
- Oscar Martinez
- Paula Cable-Dunlap
- Rangasayee Kannan
- Raymond Borges Hink
- Richard L. Reed
- Ritin Mathews
- Robert E Norris Jr
- Rob Root
- Roger G Miller
- Ryan Dehoff
- Samudra Dasgupta
- Santanu Roy
- Sarah Graham
- Scott Smith
- Srikanth Yoginath
- Steven Guzorek
- Sumit Gupta
- T Oesch
- Tony Beard
- Uvinduni Premadasa
- Vandana Rallabandi
- Varisara Tansakul
- Vera Bocharova
- Viswadeep Lebakula
- Vlastimil Kunc
- William Carter
- William Peter
- Yarom Polsky
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.