Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Peeyush Nandwana
- Srikanth Yoginath
- Venugopal K Varma
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- James A Haynes
- James J Nutaro
- Lauren Heinrich
- Mahabir Bhandari
- Pratishtha Shukla
- Sergiy Kalnaus
- Sudarsanam Babu
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Ying Yang
- Yousub Lee
- Adam Aaron
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Beth L Armstrong
- Charles D Ottinger
- Craig A Bridges
- Georgios Polyzos
- Gerry Knapp
- Govindarajan Muralidharan
- Harper Jordan
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Ramanan Sankaran
- Rose Montgomery
- Ryan Dehoff
- Sergey Smolentsev
- Sheng Dai
- Steven J Zinkle
- Sunyong Kwon
- Thomas R Muth
- Varisara Tansakul
- Vimal Ramanuj
- Wenjun Ge
- Yanli Wang
- Yutai Kato

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.